Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

De-Jun Xiong, Cui-Ping Han and Hai-Bing Li*

Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
lhbing@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.053$
$w R$ factor $=0.118$
Data-to-parameter ratio $=7.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Two tautomers in one crystal structure: ethyl 6(4)-oxo-1,6(1,4)-dihydropyrimidine-5-carboxylate

The crystal structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}$, contains a 1:1 mixture of two tautomers, viz. ethyl 6-oxo-1,6-dihydropyrimidine-5-carboxylate and ethyl 4-oxo-1,4-dihydro-pyrimidine-5-carboxylate. The molecules are linked into a three-dimensional network by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Pyrimidine-containing compounds have been intensively studied because of the biological activity which they usually exhibit (Rosowsky et al., 2003). The title compound, (I), which may be a novel precursor of bioactive heterocyclic compounds, was designed and synthesized in our laboratory.

(I)

Interestingly, the crystal structure (Fig. 1) consists of a 1:1 mixture of two tautomers, involving the exchange of a H atom between the two ring N atoms. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for (I) suggested that only one tautomer is present in solution. A similar case of prototropic annular tautomerism has been studied in an imidazole derivative (Kubicki, 2004).

All bond lengths and angles are within normal ranges. The crystal packing (Fig. 2) of (I) is stabilized by strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds between different tautomers.

Figure 1
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as spheres with arbitrary radii.

Experimental

A solution containing diethyl 2-(ethoxymethylene)malonate (1.08 g , 1 mmol) and formamidine ($0.264 \mathrm{~g}, 6 \mathrm{mmol}$) in anhydrous ethanol (30 ml) was refluxed for 24 h ; the solvent was then removed under reduced pressure. Crystals suitable for an X-ray investigation were obtained by recrystallization from methanol and chloroform ($1: 2 v / v$).

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=168.15$
Monoclinic, Cc
$a=4.768$ (3) A
$b=25.590(16) \AA$
$c=12.821(8) \AA$
$\beta=97.687$ (10) ${ }^{\circ}$
$V=1550.4(17) \AA^{3}$

Data collection

Bruker SMART APEX CCD
diffractometer
φ and ω scans
Absorption correction: none
4986 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.118$
$S=1.03$
1526 reflections
219 parameters

$$
\begin{aligned}
& Z=8 \\
& D_{x}=1.441 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=292(2) \mathrm{K} \\
& \text { Plate, colorless } \\
& 0.40 \times 0.10 \times 0.03 \mathrm{~mm}
\end{aligned}
$$

H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0587 P)^{2}\right]$

$$
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.86	2.00	$2.847(5)$	170
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~N}^{\mathrm{i}}$	0.93	2.54	$3.188(7)$	127
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.86	2.01	$2.789(5)$	151
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.55	$3.307(6)$	139
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 4^{\mathrm{ii}}$	0.93	2.50	$3.135(6)$	125
$\mathrm{C} 10-\mathrm{H} 10 \cdots 5^{\text {iii }}$	0.93	2.55	$3.281(7)$	136

Symmetry codes: (i) $x+1, y, z$; (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.
All carbon-bound H atoms were positioned geometrically and then treated as riding, with $\mathrm{Csp} p^{2}-\mathrm{H}=0.93 \AA$, methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$ and methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C})$, where $x=$ 1.5 for methyl and 1.2 for other H atoms. Atoms H 1 and $\mathrm{H} 4 A$, attached to N 1 and N 4 , respectively, were located in a difference map and refined as riding in their as-found positions, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. In the absence of significant anomalous scattering effects, 1391 Friedel pairs were merged.

Figure 2
A view of the packing in the crystal structure. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors acknowledge Dr Guodong Yin for fruitful discussions.

References

Bruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Kubicki, M. (2004). Acta Cryst. B60, 191-196.
Rosowsky, A., Papoulis, A. T. \& Queener, S. F. (2003). J. Med. Chem. 46, 3424. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

